The 40 Hz auditory steady-state response (ASSR) impairment is suggested as an electrophysiological biomarker of schizophrenia; however, existing data also points to the deficiency of low and high frequency ASSR responses. In order to obtain the full picture of potential impairment in schizophrenia, it is important to test responses at different frequencies. The current study aims to evaluate a wide frequency range (1-120 Hz) in response to brief low-frequency carrier chirp-modulated tones in a group of patients with schizophrenia. The EEG-derived envelope following responses (EFRs) were obtained in a group of male patients with schizophrenia (N = 18) and matched controls (N = 18). While subjects were watching silent movies, 440 Hz carrier chirp-modulated at 1-120 Hz tones were presented. Phase-locking index and evoked amplitude in response to stimulation were assessed and compared on point-to-point basis. The peak frequency of the low gamma response was estimated. Measures were correlated with psychopathology-positive, negative, total scores of the Positive and Negative Syndrome Scale (PANSS), and hallucination subscale scores. In comparison to controls, patients showed (1) reduced power of theta-beta (4-18 Hz) responses, (2) intact but slower low gamma (30-60 Hz), and (3) reduced high gamma (95-120 Hz) responses. No correlation survived the Bonferroni correction, but a sign of positive association between low gamma phase-locking and the prevalence of hallucinations, and a sign of negative association between high gamma phase-locking and the total PANSS scores were observed. Brain networks showed impaired capabilities to generate EFRs at different frequencies in schizophrenia; moreover, even when responses of patients did not significantly differ from controls on the group level, they still showed potentially clinically relevant variability.
Keywords: auditory steady-state response; biomarker; envelope following response; gamma; schizophrenia.