Atomistic Characterization of Gramicidin Channel Formation

J Chem Theory Comput. 2021 Jan 12;17(1):7-12. doi: 10.1021/acs.jctc.0c00989. Epub 2020 Dec 30.

Abstract

We investigated gramicidin A (gA) subunit dimerization in lipid bilayers using microsecond-long replica-exchange umbrella sampling simulations, millisecond-long unbiased molecular dynamics simulations, and machine learning. Our simulations led to a dimer structure that is indistinguishable from the experimentally determined gA channel structures, with the two gA subunits joined by six hydrogen bonds (6HB). The simulations also uncovered two additional dimer structures, with different gA-gA stacking orientations that were stabilized by four or two hydrogen bonds (4HB or 2HB). When examining the temporal evolution of the dimerization, we found that two bilayer-inserted gA subunits can form the 6HB dimer directly, with no discernible intermediate states, as well as through paths that involve the 2HB and 4HB dimers.

MeSH terms

  • Bacterial Proteins / chemistry*
  • Brevibacillus / chemistry*
  • Gramicidin / chemistry*
  • Hydrogen Bonding
  • Lipid Bilayers / chemistry
  • Molecular Dynamics Simulation
  • Protein Conformation
  • Protein Multimerization
  • Protein Subunits / chemistry
  • Thermodynamics

Substances

  • Bacterial Proteins
  • Lipid Bilayers
  • Protein Subunits
  • Gramicidin

Supplementary concepts

  • Brevibacillus brevis