Berries are grown worldwide with the most consumed berries being blackberries (Rubus spp.), blueberries (Vaccinium corymbosum), red raspberries (Rubus idaeus) and strawberries (Fragaria spp.). Berries are either consumed fresh, frozen, or processed into wines, juices, and jams. In recent times, researchers have focused their attention on berries due to their abundance in phenolic compounds. The current study aimed to evaluate the phenolic content and their antioxidant potential followed by characterization and quantification using LC-ESI-QTOF-MS/MS and HPLC-PDA. Blueberries were highest in TPC (2.93 ± 0.07 mg GAE/gf.w.) and TFC (70.31 ± 1.21 µg QE/gf.w.), whereas the blackberries had the highest content in TTC (11.32 ± 0.13 mg CE/gf.w.). Blueberries had the highest radical scavenging capacities for the DPPH (1.69 ± 0.09 mg AAE/gf.w.), FRAP (367.43 ± 3.09 µg AAE/gf.w.), TAC (1.47 ± 0.20 mg AAE/gf.w.) and ABTS was highest in strawberries (3.67 ± 0.14 mg AAE/gf.w.). LC-ESI-QTOF-MS/MS study identified a total of 65 compounds including 42 compounds in strawberries, 30 compounds in raspberries, 28 compounds in blueberries and 21 compounds in blackberries. The HPLC-PDA quantification observed phenolic acid (p-hydroxybenzoic) and flavonoid (quercetin-3-rhamnoside) higher in blueberries compared to other berries. Our study showed the presence of phenolic acids and provides information to be utilized as an ingredient in food, pharmaceutical and nutraceutical industries.
Keywords: HPLC-PDA; LC-MS/MS; antioxidant activity; blackberries; blueberries; fruit berries; polyphenols; red raspberries; strawberries.