Design, synthesis and in silico insights of new 7,8-disubstituted-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives with potent anticancer and multi-kinase inhibitory activities

Bioorg Chem. 2021 Feb:107:104569. doi: 10.1016/j.bioorg.2020.104569. Epub 2020 Dec 30.

Abstract

Aiming to obtain an efficient anti-proliferative activity, structure- and ligand-based drug design approaches were expanded and utilized to design and refine a small compound library. Subsequently, thirty-two 7,8-disubstituted-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives were selected for synthesis based on the characteristic pharmacophoric features required for PI3K and B-Raf oncogenes inhibition. All the synthesized compounds were evaluated for their in vitro anticancer activity. Compounds 17 and 22c displayed an acceptable potent activity according to the DTP-NCI and were further evaluated in the NCI five doses assay. To validate our design, compounds with the highest mean growth inhibition percent were screened against the target PI3Kα and B-RafV600E to confirm their multi-kinase activity. The tested compounds showed promising multi-kinase activity. Compounds 17 and 22c anticancer effectiveness and multi-kinase activity against PI3Kα and B-RafV600E were consolidated by the inhibition of B-RafWT, EGFR and VEGFR-2 with IC50 in the sub-micromolar range. Further investigations on the most potent compounds 17 and 22c were carried out by studying their safety on normal cell line, in silico profiling and predicted ADME characteristics.

Keywords: Anticancer; B-Raf; Multi-kinase targeting; PI3K; Xanthine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis*
  • Antineoplastic Agents / metabolism
  • Antineoplastic Agents / pharmacology
  • Binding Sites
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / metabolism
  • Humans
  • Molecular Conformation
  • Molecular Docking Simulation
  • Phosphatidylinositol 3-Kinases / chemistry
  • Phosphatidylinositol 3-Kinases / metabolism
  • Protein Kinase Inhibitors / chemistry*
  • Protein Kinase Inhibitors / metabolism
  • Protein Kinase Inhibitors / pharmacology
  • Proto-Oncogene Proteins B-raf / antagonists & inhibitors
  • Proto-Oncogene Proteins B-raf / metabolism
  • Purines / chemistry*
  • Purines / metabolism
  • Purines / pharmacology
  • Structure-Activity Relationship
  • Vascular Endothelial Growth Factor Receptor-2 / antagonists & inhibitors
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Purines
  • EGFR protein, human
  • ErbB Receptors
  • Vascular Endothelial Growth Factor Receptor-2
  • Proto-Oncogene Proteins B-raf