Purpose: To define the temporal relationship of vascular versus neuronal abnormalities in radiation retinopathy.
Methods: Twenty-five patients with uveal melanoma treated with brachytherapy and sixteen controls were tested. Functional outcome measures included visual acuity and threshold perimetry (HVF 10-2), while structural outcomes included retinal thickness by OCT and vascular measures by OCT angiography and digital fundus photography. The degree of structural abnormality was determined by intereye asymmetry compared with normal subject asymmetry. Diagnostic sensitivity and specificity of each measure were determined using receiver operating characteristic curves. The relationships between the outcome measures were quantified by Spearman correlation. The effect of time from brachytherapy on visual function, retinal layer thickness, and capillary density was also determined.
Results: Within the first 2 years of brachytherapy, outcome measures revealed visual field loss and microvascular abnormalities in 38% and 31% of subjects, respectively. After 2 years, they became more prevalent, increasing to 67% and 67%, respectively, as did retinal thinning (50%). Visual field loss, loss of capillary density, and inner retinal thickness were highly correlated with one another. Diagnostic sensitivity and specificity were highest for abnormalities in digital fundus photography, visual field loss within the central 10°, and decrease in vessel density.
Conclusions: Using quantitative approaches, radiation microvasculopathy and visual field defects were detected earlier than loss of inner retinal structure after brachytherapy. Strong correlations eventually developed between vascular pathology, change in retinal thickness, neuronal dysfunction, and radiation dose. Radiation-induced ischemia seems to be a primary early manifestation of radiation retinopathy preceding visual loss.