In Arabidopsis thaliana (Arabidopsis), the microRNA399 (miR399)/PHOSPHATE2 (PHO2) expression module is central to the response of Arabidopsis to phosphate (PO4) stress. In addition, miR399 has been demonstrated to also alter in abundance in response to salt stress. We therefore used a molecular modification approach to alter miR399 abundance to investigate the requirement of altered miR399 abundance in Arabidopsis in response to salt stress. The generated transformant lines, MIM399 and MIR399 plants, with reduced and elevated miR399 abundance respectively, displayed differences in their phenotypic and physiological response to those of wild-type Arabidopsis (Col-0) plants following exposure to a 7-day period of salt stress. However, at the molecular level, elevated miR399 abundance, and therefore, altered PHO2 target gene expression in salt-stressed Col-0, MIM399 and MIR399 plants, resulted in significant changes to the expression level of the two PO4 transporter genes, PHOSPHATE TRANSPORTER1;4 (PHT1;4) and PHT1;9. Elevated PHT1;4 and PHT1;9 PO4 transporter levels in salt stressed Arabidopsis would enhance PO4 translocation from the root to the shoot tissue which would supply additional levels of this precious cellular resource that could be utilized by the aerial tissues of salt stressed Arabidopsis to either maintain essential biological processes or to mount an adaptive response to salt stress.
Keywords: Arabidopsis thaliana; PHOSPHATE2 (PHO2) gene expression regulation; RT-qPCR; microRNA399 (miR399); molecular manipulation; salt stress.