Antibiotic resistance is a global health emergency linked to unrestrained use of pharmaceutical and personal care products (PPCPs) as prophylactic agent and therapeutic purposes across various industries. Occurrence of pharmaceuticals are identified in ground water, surface water, soils, and wastewater treatment plants (WWTPs) in ng/L to μg/L concentration range. The prevalence of organic compounds including antimicrobial agents, hormones, antibiotics, preservatives, disinfectants, synthetic musks etc. in environment have posed serious health concerns. The aim of this review is to elucidate the major sources accountable for emergence of antibiotic resistance. For this purpose, variety of introductory sources and fate of PPCPs in aquatic environment including human and veterinary wastes, aquaculture and agriculture related wastes, and other anthropogenic activities have been discussed. Furthermore, genetic and enzymatic factors responsible for transfer and appearance of antibiotic resistance genes are presented. Ecotoxicity of PPCPs has been studied in environment in order to present risk imposed to human and ecological health. As per published literature reports, the removal of antibiotics and related traces being difficult, couples the possibility of emergence of antibiotic resistance and hence sustainability in global water resources. Therefore, research on environmental behavior and control strategies should be conducted along with assessing their chronic toxicity to identify potential human and ecological risks.
Keywords: Antibiotic resistance genes; Ecotoxicity; Emergence; Pollutants; Risk assessment.
Copyright © 2020 Elsevier Inc. All rights reserved.