SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport

Am J Physiol Lung Cell Mol Physiol. 2021 Mar 1;320(3):L430-L435. doi: 10.1152/ajplung.00499.2020. Epub 2021 Jan 12.

Abstract

The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl- transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.

Keywords: CFTR; COVID-19; ENaC; GPCR; SARS-CoV-2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Transport
  • COVID-19 / metabolism
  • COVID-19 / pathology*
  • COVID-19 / virology
  • Humans
  • Lung / physiopathology*
  • Lung / virology
  • Receptors, G-Protein-Coupled / metabolism*
  • SARS-CoV-2 / isolation & purification*
  • Signal Transduction

Substances

  • Receptors, G-Protein-Coupled