Ultrafiltration isolation, structures and anti-tumor potentials of two arabinose- and galactose-rich pectins from leaves of Aralia elata

Carbohydr Polym. 2021 Mar 1:255:117326. doi: 10.1016/j.carbpol.2020.117326. Epub 2020 Nov 5.

Abstract

Two novel arabinose- and galactose-rich pectic polysaccharides, AELP-B5 (Mw, 4.25 × 104 g/mol) and B6 (Mw, 1.56 × 104 g/mol), were rapidly obtained from the leaves of Aralia elata (Miq.) Seem. with anion resin and sequenced ultrafiltration membrane columns. The structural backbone and branched chains of AELP-B5 and B6 were preliminarily elucidated by mild acid hydrolysis with HILIC-ESI--MS/MS. The planar structures and spatial configurations were further identified using UPLC-QDa and GC-MS for compositions, Smith degradation and methylation analysis, FT-IR, NMR (1H/13C, DEPT, HSQC, HMBC, COSY, NOESY and TOCSY) and SEC-MALLS-RID. (1) AELP-B5 possessed →4GalA1→ as smooth regions (HG) and a repeating disaccharide moiety of →4GalA12Rha1→ as hairy regions (RG-I) with a 1:5 molar ratio, whereas AELP-B6 had a distinguishing 1:1 molar ratio between the HG and RG-I; (2) complex side chains were constituted of T-α-Araf, 1,3-α-Araf, 1,5-α-Araf, T-β-Galp, 1,3-β-Galp, 1,4-β-Galp, 1,6-β-Galp, 1,3,4-β-Galp and 1,3,4,6-β-Galp connected at C-4 of the rhamnosyl units in RG-I of AELP-B5 and B6; and (3) both possessed highly branched and compact coil conformations. The CCK-8 assay illustrated that AELP-B6 possessed higher cytotoxicity against HepG2 and HT-29 than that of AELP-B5. Surface plasmon resonance showed the binding affinity of AELP-B6 to galectin-3 (6.488 × 10-5 M) was about 10 times stronger than that of AELP-B5 (4.588 × 10-4 M). The above findings provide a molecular structure and bioactivity basis for future potential applications of AELP in the food and medical industries.

Keywords: Aralia elata; Galectin-3 binding affinity; Pectic polysaccharides; Structural elucidation; Ultrafiltration isolations.

MeSH terms

  • Antineoplastic Agents, Phytogenic / chemistry*
  • Antineoplastic Agents, Phytogenic / isolation & purification
  • Antineoplastic Agents, Phytogenic / pharmacology
  • Arabinose / chemistry*
  • Arabinose / isolation & purification
  • Aralia / chemistry*
  • Blood Proteins / genetics
  • Blood Proteins / metabolism*
  • Carbohydrate Sequence
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Galactose / chemistry*
  • Galactose / isolation & purification
  • Galectins / genetics
  • Galectins / metabolism*
  • HT29 Cells
  • HeLa Cells
  • Hep G2 Cells
  • Humans
  • Hydrolysis
  • Pectins / chemistry*
  • Pectins / isolation & purification
  • Pectins / pharmacology
  • Plant Extracts / chemistry
  • Plant Leaves / chemistry
  • Polysaccharides / chemistry
  • Polysaccharides / isolation & purification
  • Protein Binding
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents, Phytogenic
  • Blood Proteins
  • Galectins
  • LGALS3 protein, human
  • Plant Extracts
  • Polysaccharides
  • Pectins
  • Arabinose
  • Galactose