Single-chain variable fragments (scFvs) are small-sized artificial constructs composed of the immunoglobulin heavy and light chain variable regions connected by a peptide linker. We have previously described an anti-fibroblast growth factor 2 (FGF2) immunoglobulin G (IgG) monoclonal antibody (mAb), named 3F12E7, with notable antitumor potential revealed by preclinical assays. FGF2 is a known angiogenesis-associated molecule implicated in tumor progression. In this report, we describe a recombinant scFv format for the 3F12E7 mAb. The results demonstrate that the generated 3F12E7 scFv, although prone to aggregation, comprises an active anti-FGF2 product that contains monomers and small oligomers. Functionally, the 3F12E7 scFv preparations specifically recognize FGF2 and inhibit tumor growth similar to the corresponding full-length IgG counterpart in an experimental model. In silico molecular analysis provided insights into the aggregation propensity and the antigen-recognition by scFv units. Antigen-binding determinants were predicted outside the most aggregation-prone hotspots. Overall, our experimental and prediction dataset describes an scFv scaffold for the 3F12E7 mAb and also provides insights to further engineer non-aggregated anti-FGF2 scFv-based tools for therapeutic and research purposes.