Multi-slice ptychography enables high-resolution measurements in extended chemical reactors

Sci Rep. 2021 Jan 15;11(1):1500. doi: 10.1038/s41598-020-80926-6.

Abstract

Ptychographic X-ray microscopy is an ideal tool to observe chemical processes under in situ conditions. Chemical reactors, however, are often thicker than the depth of field, limiting the lateral spatial resolution in projection images. To overcome this limit and reach higher lateral spatial resolution, wave propagation within the sample environment has to be taken into account. Here, we demonstrate this effect recording a ptychographic projection of copper(I) oxide nanocubes grown on two sides of a polyimide foil. Reconstructing the nanocubes using the conventional ptychographic model shows the limitation in the achieved resolution due to the thickness of the foil. Whereas, utilizing a multi-slice approach unambiguously separates two sharper reconstructions of nanocubes on both sides of the foil. Moreover, we illustrate how ptychographic multi-slice reconstructions are crucial for high-quality imaging of chemical processes by ex situ studying copper(I) oxide nanocubes grown on the walls of a liquid cell.