Comparison of path-based centrality measures in protein-protein interaction networks revealed proteins with phenotypic relevance during adaptation to changing nitrogen environments

J Proteomics. 2021 Mar 20:235:104114. doi: 10.1016/j.jprot.2021.104114. Epub 2021 Jan 14.

Abstract

Plants must rapidly adapt to changes in nutrient conditions. Especially adaptations to changing nitrogen environments are very complex involving also major adjustments on the protein level. Here, we used a size-exclusion chromatography-coupled to mass spectrometry approach to study the dynamics of protein-protein interactions induced by transition from full nutrition to nitrogen starvation. Comparison of interaction networks established for each nutrient condition revealed a large overlap of proteins which were part of the protein-protein interaction network, but that same set of proteins underwent different interactions at each treatment. Network topology parameter betweenness centrality (BC) was found to best reflect the relevance of individual proteins in the information flow within each network. Changes in BC for individual proteins may therefore indicate their involvement in the cellular adjustments to the new condition. Based on this analysis, a set of proteins was identified showing high nitrogen-dependent changes in their BC values: The receptor kinase AT5G49770, co-receptor QSK1, and proton-ATPase AHA2. Mutants of those proteins showed a nitrate-dependent root growth phenotype. Individual interactions within the reconstructed network were tested using FRET-FLIM technology. Taken together, we present a systematic strategy comparing dynamic changes in protein-protein interaction networks based on their network parameters to identify regulatory nodes. SIGNIFICANCE: Protein-protein interactions are known to be important in cellular signaling events, but the dynamic changes in interaction networks induced by external stimuli are still rarely studied. We systematically analyzed how changes in the nutrient environment induced a rewiring of protein-protein interactions in roots. We observed small changes in overall protein abundances, but instead a rewiring of pairwise protein-protein interactions. Betweenness centrality was found to be the optimal network topology parameter to identify protein candidates with high relevance to the information flow in the (dynamic) network. Predicted interactions of those relevant nodes were confirmed in FLIM/FRET experiments and in phenotypic analysis. The network approach described here may be a useful application in dynamic network analysis more generally.

Keywords: Dynamic protein complexes; Network path analysis; Nitrate starvation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Nitrogen
  • Phenotype
  • Protein Interaction Maps*
  • Saccharomyces cerevisiae Proteins* / metabolism

Substances

  • Saccharomyces cerevisiae Proteins
  • Nitrogen