Preictal state detection using prodromal symptoms: A machine learning approach

Epilepsia. 2021 Feb;62(2):e42-e47. doi: 10.1111/epi.16804. Epub 2021 Jan 19.

Abstract

A reliable identification of a high-risk state for upcoming seizures may allow for preemptive treatment and improve the quality of patients' lives. We evaluated the ability of prodromal symptoms to predict preictal states using a machine learning (ML) approach. Twenty-four patients with drug-resistant epilepsy were admitted for continuous video-electroencephalographic monitoring and filled out a daily four-point questionnaire on prodromal symptoms. Data were then classified into (1) a preictal group for questionnaires completed in a 24-h period prior to at least one seizure (n1 = 58) and (2) an interictal group for questionnaires completed in a 24-h period without seizures (n2 = 190). Our prediction model was based on a support vector machine classifier and compared to a Fisher's linear classifier. The combination of all the prodromal symptoms yielded a good prediction performance (area under the curve [AUC] = .72, 95% confidence interval [CI] = .61-.81). This performance was significantly enhanced by selecting a subset of the most relevant symptoms (AUC = .80, 95% CI = .69-.88). In comparison, the linear classifier systematically failed (AUCs < .6). Our findings indicate that the ML analysis of prodromal symptoms is a promising approach to identifying preictal states prior to seizures. This could pave the way for development of clinical strategies in seizure prevention and even a noninvasive alarm system.

Keywords: epilepsy; machine learning; preictal state; prodromal symptoms; prodromes; seizure prediction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Affect / physiology
  • Area Under Curve
  • Attention / physiology
  • Comprehension / physiology
  • Drug Resistant Epilepsy / physiopathology*
  • Drug Resistant Epilepsy / therapy
  • Electroencephalography
  • Female
  • Hearing Loss / physiopathology
  • Humans
  • Machine Learning
  • Male
  • Middle Aged
  • Noise
  • Photophobia / physiopathology
  • Prodromal Symptoms*
  • Reading
  • Seizures / physiopathology*
  • Seizures / prevention & control
  • Speech / physiology
  • Support Vector Machine*
  • Surveys and Questionnaires
  • Tinnitus / physiopathology
  • Video Recording
  • Vision Disorders / physiopathology
  • Young Adult