Co-production of acetoin and succinic acid by metabolically engineered Enterobacter cloacae

Biotechnol Biofuels. 2021 Jan 19;14(1):26. doi: 10.1186/s13068-021-01878-1.

Abstract

Background: Renewable chemicals have attracted attention due to increasing interest in environmental concerns and resource utilization. Biobased production of industrial compounds from nonfood biomass has become increasingly important as a sustainable replacement for traditional petroleum-based production processes depending on fossil resources. Therefore, we engineered an Enterobacter cloacae budC and ldhA double-deletion strain (namely, EC∆budC∆ldhA) to redirect carbon fluxes and optimized the culture conditions to co-produce succinic acid and acetoin.

Results: In this work, E. cloacae was metabolically engineered to enhance its combined succinic acid and acetoin production during fermentation. Strain EC∆budC∆ldhA was constructed by deleting 2,3-butanediol dehydrogenase (budC), which is involved in 2,3-butanediol production, and lactate dehydrogenase (ldhA), which is involved in lactic acid production, from the E. cloacae genome. After redirecting and fine-tuning the E. cloacae metabolic flux, succinic acid and acetoin production was enhanced, and the combined production titers of acetoin and succinic acid from glucose were 17.75 and 2.75 g L-1, respectively. Moreover, to further improve acetoin and succinic acid production, glucose and NaHCO3 modes and times of feeding were optimized during fermentation of the EC∆budC∆ldhA strain. The maximum titers of acetoin and succinic acid were 39.5 and 20.3 g L-1 at 72 h, respectively.

Conclusions: The engineered strain EC∆budC∆ldhA is useful for the co-production of acetoin and succinic acid and for reducing microbial fermentation costs by combining processes into a single step.

Keywords: Acetoin; Co-production; Enterobacter cloacae; Metabolic engineering; Succinic acid.