Direct Observation of Structural Heterogeneity and Tautomerization of Single Hypericin Molecules

J Phys Chem Lett. 2021 Jan 28;12(3):1025-1031. doi: 10.1021/acs.jpclett.0c03459. Epub 2021 Jan 20.

Abstract

Tautomerization is a fundamental chemical reaction which involves the relocation of a proton in the reactants. Studying the optical properties of tautomeric species is challenging because of ensemble averaging. Many molecules, such as porphines, porphycenes, or phenanthroperylene quinones, exhibit a reorientation of the transition dipole moment (TDM) during tautomerization, which can be directly observed in single-molecule experiments. Here, we study single hypericin molecules, which is a prominent phenanthroperylene quinone showing antiviral, antidepressive, and photodynamical properties. Observing abrupt flipping of the image pattern combined with time-dependent density functional theory calculations allows drawing conclusions about the coexistence of four tautomers and their conversion path. This approach allows the unambiguous assignment of a TDM orientation to a specific tautomer and enables the determination of the chemical structure in situ. Our approach can be applied to other molecules showing TDM reorientation during tautomerization, helping to gain a deeper understanding of this important process.