A statistically significant higher prevalence of the RET p.Met918Thr somatic mutation, identified by direct sequencing, was previously reported in MTC > 2 cm than in smaller tumors. Aim of this study was to correlate the full RET and RAS mutation profile, identified by a Next Generation Sequencing approach, with the growth rate, proliferation and tumor size of MTC. Data of 149 sporadic MTC patients were correlated with RET mutations and Ki67 positivity. Eighty-one cases had a somatic RET mutation, 40 had a RAS mutation and 28 were negative. A statistically significant higher prevalence of RET mutations was found in MTC > 2 cm. A higher prevalence of RET more aggressive mutations, higher allelic frequencies and, higher percentage of Ki67 positive cells were found in larger tumors which had also a worse outcome. Our study highlights the predominant role of RET somatic mutations in MTC tumorigenesis. We demonstrate that RET mutation prevalence and allelic frequency (AF) are significantly higher in larger tumors. Based on these results, we can conclude that RET mutated C-cells's growth and proliferation are more rapid than those of non-mutated cells and give origin to bigger and more aggressive MTC.
Keywords: Ki67; RAS; RET; allelic frequency; cells’ growth; medullary thyroid cancer.