Targeting FAPα-expressing tumor-associated mesenchymal stromal cells inhibits triple-negative breast cancer pulmonary metastasis

Cancer Lett. 2021 Apr 10:503:32-42. doi: 10.1016/j.canlet.2021.01.013. Epub 2021 Jan 19.

Abstract

Tumor metastasis is the main cause of death in patients with triple-negative breast cancer (TNBC). Bone marrow-derived mesenchymal stem cells (BM-MSCs) have tropism towards tumor tissues, and can be converted into tumor-associated mesenchymal stromal cells (TA-MSCs) to facilitate TNBC metastasis through interactions with tumor-associated macrophages (TAMs). However, the underlying molecular mechanisms are complex and unclear, and effective strategies to suppress tumor metastasis via eliminating TA-MSCs are still lacking. Here, we demonstrate that fibroblast activation protein alpha (FAPα) was overexpressed in TA-MSCs, which prompts TA-MSCs to secrete multiple C-C motif chemokine ligands, promoting C-C motif chemokine receptor 2 (CCR2)+ TAM recruitment and facilitating TAM polarization into the M2 phenotype, thereby promoting TNBC pulmonary metastasis. Z-GP-DAVLBH, an FAPα-activated vinblastine prodrug, induces FAPα+ TA-MSC apoptosis, which significantly suppresses CCR2+ TAM recruitment and polarization, thus inhibiting pulmonary metastasis of orthotopic TNBC cell-derived xenografts and patient-derived xenografts. This study provides insight into an important role of FAPα in mediating TA-MSC-induced TNBC metastasis and provides compelling evidence that targeting TA-MSCs with an FAPα-activated prodrug is a promising strategy for suppressing TNBC metastasis.

Keywords: Apoptosis; FAPα-activated prodrug; Tumor-associated macrophages.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Endopeptidases / genetics*
  • Endopeptidases / metabolism
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology*
  • Lung Neoplasms / secondary*
  • Membrane Proteins / genetics*
  • Membrane Proteins / metabolism
  • Mice
  • Neoplasm Transplantation
  • Neoplastic Stem Cells / metabolism*
  • Triple Negative Breast Neoplasms / genetics
  • Triple Negative Breast Neoplasms / metabolism
  • Triple Negative Breast Neoplasms / pathology*
  • Tumor Microenvironment
  • Up-Regulation*

Substances

  • Membrane Proteins
  • Endopeptidases
  • fibroblast activation protein alpha