The genetic basis of flowering time changes across environments, and pleiotropy may limit adaptive evolution of populations in response to local conditions. However, little information is known about how genetic architecture changes among environments. We used genome-wide association studies (GWAS) in Boechera stricta (Graham) Al-Shehbaz, a relative of Arabidopsis, to examine flowering variation among environments and associations with climate conditions in home environments. Also, we used molecular population genetics to search for evidence of historical natural selection. GWAS found 47 significant quantitative trait loci (QTLs) that influence flowering time in one or more environments, control plastic changes in phenology between experiments, or show associations with climate in sites of origin. Genetic architecture of flowering varied substantially among environments. We found that some pairs of QTLs showed similar patterns of pleiotropy across environments. A large-effect QTL showed molecular signatures of adaptive evolution and is associated with climate in home environments. The derived allele at this locus causes later flowering and predominates in sites with greater water availability. This work shows that GWAS of climate associations and ecologically important traits across diverse environments can be combined with molecular signatures of natural selection to elucidate ecological genetics of adaptive evolution.
Keywords: Boechera stricta; climate; flowering time; genetic architecture; genotype-environment interaction; plasticity; pleiotropy.
© 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.