Salt formation can enable the development of poorly water-soluble drugs containing at least one ionizable moiety. Not only can salts offer a solubility enhancement that can sometimes far exceed that of other commonly used solubilization strategies applied across the pharmaceutical industry, they can simultaneously bestow additional benefits such as providing low-cost formulation options. The goal of this work is to put forth a simple methodology to enable one to accurately predict the maximal solubility advantage of acidic and basic drugs whose unionized conjugate (neutral parent molecule) is poorly soluble. While published equations leveraging the Henderson-Hasselbalch/H-H relationship reasonably estimate the thermodynamic solubility limit (in systems where there is no supersaturation), under physiologically relevant conditions the maximal/kinetic solubility can play an important role in determining oral bioavailability, as in the case of amorphous drugs. Under these circumstances, a higher solubility can be maintained for short durations through drug supersaturation provided that the precipitation is slow, thereby causing deviations from H-H predictions. It is possible also that, in some instances, supersaturation could coincide with behavior previously attributed to drug aggregation in solution. The proposed methodology utilizes speciation across the pH range to allow one to determine the maximal amount of ionized and unionized drug in solution at each pH. The calculation is easily extended to cases where the counterion serves as a competing weak acid, weak base, or as a common ion. Additionally, a more thorough assessment of the Gibbs free energy change associated with the solubilization of salts is also presented, as this energy describes the key driving force for the recrystallization of the neutral parent by triggering its nucleation. Lastly, to demonstrate applicability to real-world compounds containing multiple ionizable moieties, the complex pH-solubility profile of a drug maleate salt taken from the literature is simulated.
Keywords: API; Counterion; Enhancement; Salt; Simulation; Solubility.
Copyright © 2021 Elsevier B.V. All rights reserved.