Objective: Fluorodeoxyglucose-positron emission tomography (FDG-PET) is an established, independent, strong predictor of surgical outcome in refractory epilepsy. In this study, we explored the added value of quantitative [18F]FDG-PET features combined with clinical variables, including electroencephalography (EEG), [18F]FDG-PET, and magnetic resonance imaging (MRI) qualitative interpretations, to predict long-term seizure recurrence (mean post-op follow-up of 5.85 ± 3.77 years).
Methods: Machine learning predictive models of surgical outcome were created using a random forest classifier trained on quantitative features in 89 patients with drug-refractory temporal lobe epilepsy evaluated at the Hospital of the University of Pennsylvania epilepsy surgery program (2003-2016). Quantitative features were calculated from asymmetry features derived from image processing using Advanced Normalization Tools (ANTs).
Results: The best-performing model used quantification and had an out-of-bag accuracy of 0.71 in identifying patients with seizure recurrence (Engel IB or worse) which outperformed that using qualitative clinical data by 10%. This model is shared through open-source software for research use. In addition, several asymmetry features in temporal and extratemporal regions that were significantly associated with seizure freedom are identified for future study.
Significance: Complex quantitative [18F]FDG-PET imaging features can predict seizure recurrence in patients with refractory temporal lobe epilepsy. These initial retrospective results in a cohort with long-term follow-up suggest that using quantitative imaging features from regions in the epileptogenic network can inform the clinical decision-making process.
Keywords: 3D-SSP; Asymmetry; Drug-resistant epilepsy; Imaging features; Machine learning; Open source; PET; Surgical outcome.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.