Intrinsic viscosity is a key hydrodynamic parameter to understand molecular structure and hydration, as well as intramolecular interactions. Commercially available instruments measure intrinsic viscosity by recording the macromolecular mobility in a capillary. These instruments monitor Taylor dispersion using an absorbance or fluorescence detector. By design, these instruments behave like U-tube viscometers. To our knowledge, there are no studies to date showing that the Viscosizer TD instrument (Malvern-Panalytical) is able to measure the intrinsic viscosity of macromolecules. In this study, we then performed our assays on the Poly(ethylene oxide) polymer (PEO), used classically as a standard for viscometry measurements and on three model proteins: the bovine serum albumin (BSA), the bevacizumab monoclonal antibody, and the RTX Repeat Domain (RD) of the adenylate cyclase toxin of Bordetella pertussis (CyaA). The presence of P20 in the samples is critical to get reliable results. The data obtained with our in-house protocol show a strong correlation with intrinsic viscosity values obtained using conventional techniques. However, with respect to them, our measurements could be performed at relatively low concentrations, between 2 and 5 mg/ml, using only 7 µL per injection. Altogether, our results show that the Viscosizer TD instrument is able to measure intrinsic viscosities in a straightforward manner. This simple and innovative approach should give a new boost to intrinsic viscosity measurements and should reignite the interest of biophysicists, immunologists, structural biologists and other researchers for this key physicochemical parameter.
Keywords: Bovine serum albumin (BSA); Huggins’ constant; Intrinsic viscosity; Kraemers’ constant; Taylor dispersion; U-tube; Viscosizer TD.