Objective: This study aims to develop a machine learning model for prediction of malignancy in T2 hyperintense mesenchymal uterine tumors based on T2-weighted image (T2WI) features and clinical information.
Methods: This retrospective study included 134 patients with T2 hyperintense uterine mesenchymal tumors (104 patients in training cohort and 30 in testing cohort). A total of 960 radiomics features were initially computed and extracted from each 3D segmented tumor depicting on T2WI. The support vector machine (SVM) classifier was applied to build computer-aided diagnosis (CAD) models by using selected clinical and radiomics features, respectively. Finally, an observer study was conducted by comparing with two radiologists to evaluate the diagnostic performance. The area under the receiver operating characteristic (ROC) curve (AUC) was computed to assess the performance of each model.
Results: Comparing with the T2WI-based radiomics model (AUC: 0.76 ± 0.09) and the clinical model (AUC: 0.79 ± 0.09), the combined model significantly improved the AUC value to 0.91 ± 0.05 (p < 0.05). The clinical-radiomics combined model yielded equivalent or higher performance than two radiologists (AUC: 0.78 vs. 0.91, p = 0.03; 0.90 vs.0.91, p = 0.13). There was a significant difference between the AUC values of two radiologists (p < 0.05).
Conclusions: It is feasible to predict malignancy risk of T2 hyperintense uterine mesenchymal tumors by combining clinical variables and T2WI-based radiomics features. Machine learning-based classification model may be useful to assist radiologists in decision-making.
Key points: • Radiomics approach has the potential to distinguish between benign and malignant mesenchymal uterine tumors. • T2WI-based radiomics analysis combined with clinical variables performed well in predicting malignancy risk of T2 hyperintense uterine mesenchymal tumors. • Machine learning-based classification model may be useful to assist radiologists in characterization of a T2 hyperintense uterine mesenchymal tumor.
Keywords: Leiomyoma; Machine learning; Magnetic resonance imaging; Sarcoma; Uterus.
© 2021. European Society of Radiology.