Keratoconus Diagnosis: Validation of a Novel Parameter Set Derived from IOP-Matched Scenario

J Ophthalmol. 2020 Oct 28:2020:6530279. doi: 10.1155/2020/6530279. eCollection 2020.

Abstract

Purpose: Considering that intraocular pressure (IOP) is an important confounding factor in corneal biomechanical evaluation, the notion of matching IOP should be introduced to eliminate any potential bias. This study aimed to assess the capability of a novel parameter set (NPS) derived from IOP-matched scenario to diagnose keratoconus.

Methods: Seventy samples (training set; 35 keratoconus and 35 normal corneas; pairwise matching for IOP) were used to determine NPS by forward logistic regression. A large validation dataset comprising 62 matching samples (31 keratoconus and 31 normal corneas) and 203 unmatching samples (112 keratoconus and 91 normal corneas) was used to evaluate its clinical significance. To further assess its diagnosis capability, NPS was compared with the other two prior biomechanical indexes.

Results: NPS was comprised of three biomechanical parameters, namely, DA Ratio Max 1 mm (DRM1), the first applanation time (AT1), and an energy loading parameter (Eload). NPS was successfully applied to the validation dataset, with a higher accuracy of 96.8% and 95.6% in the IOP-matched and -unmatched scenarios, respectively. More surprisingly, accuracy of NPS was 95.5% in the combined validation, an improvement compared to the two prior biomechanical indexes.

Conclusions: This is the first study taking IOP bias into consideration to determine a biomechanical parameter set. Our study shows that NPS indeed offers comparable performance in keratoconus diagnosis. Translational Relevance. Determining a parameter set after eliminating the influence from IOP is useful in revealing the essential differences between keratoconus and normal corneas and possibly facilitating further progress in keratoconus diagnosis.