Auxin is fundamental to the growth and development of land plants, and acts in large part through the control of gene activity. Genetic and biochemical analysis of the nuclear auxin signaling pathway (NAP) has led to the establishment of a generic model for auxin-dependent gene regulation. To understand how this dynamic system operates in living cells, quantitative data are needed. For this, the liverwort Marchantia polymorpha provides a useful model system. Its limited number of NAP components, combined with experimental approaches to determine concentrations, binding affinities, and turnover rates, will enable a new, quantitative view on the mechanisms that allow auxin to control plant growth and development.
Copyright © 2021 Elsevier Ltd. All rights reserved.