We present the first example of macroscalar helices co-assembled from temperature-responsive carbohydrate-based bolaamphiphiles (CHO-Bolas) and 1,4-benzenediboronic acid (BDBA). The CHO-Bolas contained hydrophilic glucose or mannose moieties and a hydrophobic coumarin dimer. They showed temperature-responsive reversible micelle-to-vesicle transition (MVT) in aqueous solutions. After the binding of carbohydrate moieties with boronic acids of BDBA in their alkaline solutions, right-handed helices were formed via the temperature-driven chirality transfer of d-glucose or d-mannose from the molecular to supramolecular level. These helices were co-assembled by unreacted BDBA, boronate esters (B-O-C bonds) between CHO-Bolas and BDBA, as well as boroxine anhydrides (B-O-B bonds) of self-condensed BDBA. After heating at 300 °C under nitrogen, the helices displayed excellent morphological stability. Moreover, they emitted bright blue luminescence caused by strong self-condensation of BDBA and decomposition of coumarin dimers.
Keywords: assembly; bolaamphiphile; chirality transfer; helices; temperature-responsive.
© 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.