Purpose: To assess the association of RAS mutation status and radiomics-derived data by Contrast Enhanced-Magnetic Resonance Imaging (CE-MRI) in liver metastases. Materials and Methods: 76 patients (36 women and 40 men; 59 years of mean age and 36-80 years as range) were included in this retrospective study. Texture metrics and parameters based on lesion morphology were calculated. Per-patient univariate and multivariate analysis were made. Wilcoxon-Mann-Whitney U test, receiver operating characteristic (ROC) analysis, pattern recognition approaches with features selection approaches were considered. Results: Significant results were obtained for texture features while morphological parameters had not significant results to classify RAS mutation. The results showed that using a univariate analysis was not possible to discriminate accurately the RAS mutation status. Instead, considering a multivariate analysis and classification approaches, a KNN exclusively with texture parameters as predictors reached the best results (AUC of 0.84 and an accuracy of 76.9% with 90.0% of sensitivity and 67.8% of specificity on training set and an accuracy of 87.5% with 91.7% of sensitivity and 83.3% of specificity on external validation cohort). Conclusions: Texture parameters derived by CE-MRI and combined using multivariate analysis and patter recognition approaches could allow stratifying the patients according to RAS mutation status.
Keywords: RAS mutation; colorectal liver metastases; contrast enhanced magnetic resonance imaging; radiomics.