Background and purpose: Poststroke depression is a common stroke sequel, yet its neurobiological substrates are still unclear. We sought to determine whether specific lesion locations are associated with depressive symptoms after stroke.
Methods: In a prospective study, 270 patients with first ever stroke were repeatedly tested with the depression subscale of the Hospital Anxiety and Depression Scale within the first 4 weeks and 6 months after stroke. Voxel-based lesion behavior mapping based on clinical imaging was performed to test for associations between symptoms of depression and lesion locations.
Results: Frequency of poststroke depression (Hospital Anxiety and Depression Scale-D score >7) after 6 months was 19.6%. Higher Hospital Anxiety and Depression Scale-D scores for depression within the first 4 weeks were the only independent predictor for poststroke depression after 6 months in a multiple logistic regression also including age, sex, lesion volume, stroke severity, Barthel-Index, and the anxiety subscale of the Hospital Anxiety and Depression Scale. Nonparametric permutation-test based voxel-based lesion behavior mapping identified a cluster of voxels mostly within the left ventrolateral prefrontal cortex where lesions were significantly associated with more depressive symptoms after 6 months. No such association was observed within the right hemisphere despite better lesion coverage.
Conclusions: Lesions in the left ventrolateral prefrontal cortex increase the risk of depressive symptoms 6 months poststroke. Lesions within the right hemisphere are unrelated to depressive symptoms. Recognition of left frontal lesions as a risk factor should help in the early diagnosis of poststroke depression through better risk stratification. The results are in line with evidence from functional imaging and noninvasive brain stimulation in patients without focal brain damage indicating that dysfunction in the left lateral prefrontal cortex contributes to depressive disorders.
Keywords: brain; depression; prefrontal cortex; risk factors.