The exposure intensity during a shift and the metabolite levels in the shift-end urine were examined in male workers exposed to either benzene (65 subjects; the benzene group), toluene (35 subjects; the toluene group), or a mixture of both (55 subjects; the mixture group). In addition, 35 non-exposed male workers (the control group) were similarly examined for urinary metabolites to define background levels. A linear relationship was established between the intensity of solvent exposure and the corresponding urinary metabolite levels (i.e. phenol, catechol and quinol from benzene, and hippuric acid and o-cresol from toluene) in each case when one of the three exposed groups was combined with the control group for calculation. Comparison of regression lines in combination with regression analysis disclosed that urinary levels of phenol and quinol (but not catechol) were lower in the mixture group than in the benzene group when the intensities of exposure to benzene were comparable, indicating that the biotransformation of benzene to phenolic compounds (excluding catechol) in man is suppressed by co-exposure to toluene. Conversely, metabolism of toluene to hippuric acid was suppressed by benzene co-exposure. Conversion of toluene to o-cresol was also reduced by benzene, but to a lesser extent. The significance of the present findings on the mutual suppression of metabolism between benzene and toluene is discussed in relation to solvent toxicology and biological monitoring of exposure to the solvents.