Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors

Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.

Abstract

Inhibition of complex I of the mitochondrial respiratory chain (cI) by rotenone and methyl-phenylpyridinium (MPP +) leads to the degeneration of dopaminergic neurons in man and rodents. To formally describe this mechanism of toxicity, an adverse outcome pathway (AOP:3) has been developed that implies that any inhibitor of cI, or possibly of other parts of the respiratory chain, would have the potential to trigger parkinsonian motor deficits. We used here 21 pesticides, all of which are described in the literature as mitochondrial inhibitors, to study the general applicability of AOP:3 or of in vitro assays that are assessing its activation. Five cI, three complex II (cII), and five complex III (cIII) inhibitors were characterized in detail in human dopaminergic neuronal cell cultures. The NeuriTox assay, examining neurite damage in LUHMES cells, was used as in vitro proxy of the adverse outcome (AO), i.e., of dopaminergic neurodegeneration. This test provided data on whether test compounds were unspecific cytotoxicants or specifically neurotoxic, and it yielded potency data with respect to neurite degeneration. The pesticide panel was also examined in assays for the sequential key events (KE) leading to the AO, i.e., mitochondrial respiratory chain inhibition, mitochondrial dysfunction, and disturbed proteostasis. Data from KE assays were compared to the NeuriTox data (AO). The cII-inhibitory pesticides tested here did not appear to trigger the AOP:3 at all. Some of the cI/cIII inhibitors showed a consistent AOP activation response in all assays, while others did not. In general, there was a clear hierarchy of assay sensitivity: changes of gene expression (biomarker of neuronal stress) correlated well with NeuriTox data; mitochondrial failure (measured both by a mitochondrial membrane potential-sensitive dye and a respirometric assay) was about 10-260 times more sensitive than neurite damage (AO); cI/cIII activity was sometimes affected at > 1000 times lower concentrations than the neurites. These data suggest that the use of AOP:3 for hazard assessment has a number of caveats: (i) specific parkinsonian neurodegeneration cannot be easily predicted from assays of mitochondrial dysfunction; (ii) deriving a point-of-departure for risk assessment from early KE assays may overestimate toxicant potency.

Keywords: AOP:3; High-content imaging; In vitro neurotoxicity; Mechanistic safety assessment; Mitotoxicity; TempO-Seq.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers
  • Cell Line
  • Cell Line, Tumor
  • Dopaminergic Neurons / drug effects
  • Dopaminergic Neurons / metabolism
  • Drug-Related Side Effects and Adverse Reactions
  • Electron Transport / drug effects*
  • Electron Transport Chain Complex Proteins / antagonists & inhibitors*
  • Electron Transport Complex I / antagonists & inhibitors
  • Electron Transport Complex II / antagonists & inhibitors
  • Electron Transport Complex III / antagonists & inhibitors
  • Enzyme Inhibitors / toxicity*
  • Humans
  • Mitochondria / drug effects*
  • Mitochondria / metabolism*
  • Pesticides / toxicity*
  • Proteostasis / drug effects
  • Risk Assessment
  • Transcriptome

Substances

  • Biomarkers
  • Electron Transport Chain Complex Proteins
  • Enzyme Inhibitors
  • Pesticides
  • Electron Transport Complex II
  • Electron Transport Complex I
  • Electron Transport Complex III