Diagnosis of COVID-19 using CT scan images and deep learning techniques

Emerg Radiol. 2021 Jun;28(3):497-505. doi: 10.1007/s10140-020-01886-y. Epub 2021 Feb 1.

Abstract

Early diagnosis of the coronavirus disease in 2019 (COVID-19) is essential for controlling this pandemic. COVID-19 has been spreading rapidly all over the world. There is no vaccine available for this virus yet. Fast and accurate COVID-19 screening is possible using computed tomography (CT) scan images. The deep learning techniques used in the proposed method is based on a convolutional neural network (CNN). Our manuscript focuses on differentiating the CT scan images of COVID-19 and non-COVID 19 CT using different deep learning techniques. A self-developed model named CTnet-10 was designed for the COVID-19 diagnosis, having an accuracy of 82.1%. Also, other models that we tested are DenseNet-169, VGG-16, ResNet-50, InceptionV3, and VGG-19. The VGG-19 proved to be superior with an accuracy of 94.52% as compared to all other deep learning models. Automated diagnosis of COVID-19 from the CT scan pictures can be used by the doctors as a quick and efficient method for COVID-19 screening.

Keywords: COVID-19; CT scan; Diagnosis using deep learning.

MeSH terms

  • COVID-19 / diagnostic imaging*
  • Deep Learning*
  • Diagnosis, Differential
  • Early Diagnosis
  • Humans
  • Pandemics
  • SARS-CoV-2
  • Tomography, X-Ray Computed / methods*