Global warming has an impact on crop growth and development. Flowering time is particularly sensitive to environmental factors such as day length and temperature. In this study, we investigated the effects of global warming on flowering using an open-top Climatron chamber, which has a higher temperature and CO2 concentration than in the field. Two different soybean cultivars, Williams 82 and IT153414, which exhibited different flowering times, were promoted flowering in the open-top Climatron chamber than in the field. We more specifically examined the expression patterns of soybean flowering genes on the molecular level under high-temperature conditions. The elevated temperature induced the expression of soybean floral activators, GmFT2a and GmFT5a as well as a set of GmCOL genes. In contrast, it suppressed floral repressors, E1 and E2 homologs. Moreover, high-temperature conditions affected the expression of these flowering genes in a day length-independent manner. Taken together, our data suggest that soybean plants properly respond and adapt to changing environments by modulating the expression of a set of flowering genes in the photoperiod pathway for the successful production of seeds and offspring.
Keywords: carbon dioxide; flowering time; gene expression; high temperature; soybean.