Echocardiographic myocardial strain analysis describes subclinical cardiac dysfunction after craniospinal irradiation in pediatric and young adult patients with central nervous system tumors

Cardiooncology. 2021 Feb 2;7(1):5. doi: 10.1186/s40959-021-00093-z.

Abstract

Background: Craniospinal irradiation (CSI) is part of the treatment of central nervous system (CNS) tumors and is associated with cardiovascular disease in adults. Global myocardial strain analysis including longitudinal peak systolic strain (GLS), circumferential peak systolic strain (GCS), and radial peak systolic strain (GRS) can reveal subclinical cardiac dysfunction.

Methods: Retrospective, single-center study in patients managed with CSI vs. age-matched controls. Clinical data and echocardiography, including myocardial strain analysis, were collected at early (< 12 months) and late (≥ 12 months) time points after completion of CSI.

Results: Echocardiograms were available at 20 early and 34 late time points. Patients at the late time point were older (21.7 ± 10.4 vs. 13.3 ± 9.6 years) and further out from CSI (13.1 ± 8.8 vs. 0.2 ± 0.3 years). Standard echocardiographic parameters were normal for both groups. For early, CSI vs. control: GLS was - 16.8 ± 3.6% vs. -21.3 ± 4.0% (p = 0.0002), GCS was - 22.5 ± 5.2% vs. -21.3 ± 3.4% (p = 0.28), and GRS was 21.8 ± 11.0% vs. 26.9 ± 7.7% (p = 0.07). For late, CSI vs. control: GLS was - 16.2 ± 5.4% vs. -21.6 ± 3.7% (p < 0.0001), GCS was - 20.9 ± 6.8% vs. -21.9 ± 3.5% (p = 0.42), and GRS was 22.5 ± 10.0% vs. 27.3 ± 8.3% (p = 0.03). Radiation type (proton vs. photon), and radiation dose (< 30 Gy vs. ≥ 30 Gy) did not impact any parameter, although numbers were small.

Conclusions: Subclinical cardiac systolic dysfunction by GLS is present both early and late after CSI. These results argue for future studies to determine baseline cardiovascular status and the need for early initiation of longitudinal follow-up post CSI.

Keywords: Cardiac; Craniospinal irradiation; Neuro-oncology; Surveillance.