Nitrate Uptake and Transport Properties of Two Grapevine Rootstocks With Varying Vigor

Front Plant Sci. 2021 Jan 18:11:608813. doi: 10.3389/fpls.2020.608813. eCollection 2020.

Abstract

In viticulture, rootstocks are essential to cope with edaphic constraints. They can also be used to modulate scion growth and development to help improve berry yield and quality. The rootstock contribution to scion growth is not fully understood. Since nitrogen (N) is a significant driver of grapevine growth, rootstock properties associated with N uptake and transport may play a key role in the growth potential of grafted grapevines. We evaluated N uptake and transport in a potted system using two grapevines rootstocks [Riparia Gloire (RG) and 1103 Paulsen (1103P)] grafted to Pinot noir (Pommard clone) scion. Combining results of nitrate induction and steady-state experiments at two N availability levels, we observed different responses in the uptake and utilization of N between the two rootstocks. The low vigor rootstock (RG) exhibited greater nitrate uptake capacity and nitrate assimilation in roots after nitrate resupply than the more vigorous 1103P rootstock. This behavior may be attributed to a greater root carbohydrate status observed in RG for both experiments. However, 1103P demonstrated a higher N translocation rate to shoots regardless of N availability. These distinct rootstock behaviors resulted in significant differences in biomass allocation between roots and shoots under N-limited conditions, although the overall vine biomass was not different. Under sufficient N supply, differences between rootstocks decreased but 1103P stored more N in roots, which may benefit growth in subsequent growing seasons. Overall, greater transpiration of vines grafted to 1103P rootstock causing higher N translocation to shoots could partially explain its known growth-promoting effect to scions under low and high N availability, whereas the low vigor typically conferred to scions by RG may result from the combination of lower N translocation to shoots and a greater allocation of biomass toward roots when N is low.

Keywords: N transport; carbohydrate status; grapevine vigor; nitrate uptake; rootstock; transpiration.