Background: Carbonic anhydrase II deficiency syndrome is an autosomal recessive osteopetrosis with renal tubular acidosis and cerebral calcifications. We tried to detect the causative mutation for carbonic anhydrase II deficiency syndrome in a five-generation Chinese family.
Materials and methods: Genomic DNA was extracted from whole blood of the proband, his grandmother, parents, aunt, uncle and sister. The exomes were sequenced by whole exon sequencing followed by genetic analysis and Sanger sequencing validation. Then, physical and chemical properties studies and structure analysis were performed on mutated protein. Finally, Minigene model of vector plasmids for wild type and mutant type was constructed and transfected into human embryonic kidney 293T cells to further explore the expression change of CA2 transcript and protein after mutation.
Results: Sequencing and genetic analysis have revealed the homozygous nonsense mutation of CA2 gene (c.368G > A, p.W123X) in the exon 4 of chromosome 8 of the proband, while it was not found in his grandmother, parents, aunt, uncle and sister. Furthermore, Sanger sequencing in the proband and his parents validated the mutation. Properties and structure of mutated CA2 proteins changed after mutation, especially in change of protein modification and hindrance of zinc ions binding, which may lead to decreased protein expression level of CA2.
Conclusions: We found a new homozygous nonsense mutation in CA2 gene (c.368G > A, p.W123X), which may be valuable in the early diagnosis and therapy of carbonic anhydrase II deficiency syndrome.
Keywords: CA2; Carbonic anhydrase II deficiency syndrome; Homozygous nonsense mutation; Human embryonic kidney 293T cells; Minigene model; Whole exome sequencing.