Does Metformin Modulate Mitochondrial Dynamics and Function in Type 2 Diabetic Patients?

Antioxid Redox Signal. 2021 Aug 10;35(5):377-385. doi: 10.1089/ars.2021.0019. Epub 2021 Mar 22.

Abstract

Metformin is an effective drug against type 2 diabetes (T2D), a pathogenesis in which mitochondrial dysfunction is one of the main players. Thus, our first aim was to describe the effect of metformin on mitochondrial function in an outpatient population with T2D. For analyzing this hypothesis, we performed a preliminary cross-sectional study complying with the STROBE requirements. We studied leukocytes from 139 healthy controls, 39 T2D patients without metformin treatment, and 81 T2D patients who had been on said treatment for at least 1 year. Leukocytes from T2D patients displayed higher total and mitochondrial reactive oxygen species levels, lower mitochondrial membrane potential, and lower oxygen consumption. Moreover, their mitochondria expressed lower mRNA and protein levels of fusion proteins mitofusin-1 (MFN1), mitofusin-2 (MFN2), and optic atrophy 1 (OPA1), and higher protein and gene expression levels of mitochondrial fission protein 1 (FIS1) and dynamin-related protein 1 (DRP-1). In addition, we observed enhanced leukocyte/endothelial interactions in T2D patients. Metformin reversed most of these effects, ameliorating mitochondrial function and dynamics, and reducing the leukocyte/endothelial interactions observed in T2D patients. These results raise the question of whether metformin tackles T2D by improving mitochondrial dysfunction and regulating mitochondrial dynamics. Furthermore, it would seem that metformin modulates the alteration of interactions between leukocytes and the endothelium, a subclinical marker of early atherosclerosis. Antioxid. Redox Signal. 35, 377-385.

Keywords: inflammation; metformin; mitochondrial dynamics; mitochondrial dysfunction; type 2 diabetes.

Publication types

  • News
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diabetes Mellitus, Type 2 / drug therapy*
  • Diabetes Mellitus, Type 2 / metabolism
  • Dynamins / genetics
  • Dynamins / metabolism
  • GTP Phosphohydrolases / genetics
  • GTP Phosphohydrolases / metabolism
  • Humans
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Metformin / pharmacology*
  • Mitochondria / drug effects*
  • Mitochondria / metabolism
  • Mitochondrial Dynamics / drug effects*
  • Mitochondrial Membrane Transport Proteins / genetics
  • Mitochondrial Membrane Transport Proteins / metabolism
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism

Substances

  • FIS1 protein, human
  • Membrane Proteins
  • Mitochondrial Membrane Transport Proteins
  • Mitochondrial Proteins
  • Metformin
  • GTP Phosphohydrolases
  • MFN2 protein, human
  • OPA1 protein, human
  • Mfn1 protein, human
  • DNM1L protein, human
  • Dynamins