The effects of extracellular Ca2+ withdrawal were studied on isolated diaphragmatic muscle fibers and compared with the effects on the papillary, soleus, and extensor digitorum longus (EDL) contractility, using the same in vitro model. Diaphragmatic fibers were obtained from 15 rats, and papillary muscles, soleus, and EDL were obtained from 10 animals. Isometric force generated in response to 1-Hz supramaximal electrical stimulation was measured with a highly sensitive photoelectric transducer. After control measurements, perfusion with a Krebs solution depleted of calcium (0 Ca2+) was started while the fibers were continuously stimulated (4 times/min) and twitches recorded. For the papillary fibers, perfusion with zero Ca2+ was followed by an immediate decrease in twitch tension, complete twitch abolition occurring within 3 +/- 1 min after zero-Ca2+ exposure. Diaphragmatic fibers behaved similarly, although twitch abolition was delayed (10 +/- 3 min after 0-Ca2+ exposure). For the soleus fibers, the twitch amplitude amounted to 38 +/- 10% of control (62% decrease on the average) after 30 min of zero-Ca2+ exposure, no twitch abolition being noted even after 1 h of Ca2+-free exposure. The twitch amplitude of the EDL fibers amounted to 75 +/- 7% of control (25% decrease) after 30 min of zero-Ca2+ exposure. The recovery kinetics for the four fiber types after reexposure to Ca2+-containing solution were also different, with papillary and diaphragmatic fibers recovering completely within 2.5 +/- 0.5 and 4 +/- 0.5 min, respectively. By contrast, neither the soleus nor the EDL showed complete recovery after 30 min.(ABSTRACT TRUNCATED AT 250 WORDS)