Atrioventricular (AV) nodal tissue synchronizes activities of atria and ventricles of the vertebrate heart and is also a potential site of cardiac arrhythmia, e.g., under acute heat stress. Since ion channel composition and ion currents of the fish AV canal have not been previously studied, we measured major cation currents and transcript expression of ion channels in rainbow trout (Oncorhynchus mykiss) AV tissue. Both ion current densities and expression of ion channel transcripts indicate that the fish AV canal has a characteristic electrophysiological phenotype that differs from those of sinoatrial tissue, atrium and ventricle. Two types of cardiomyocytes were distinguished electrophysiologically in trout AV nodal tissue: the one (transitional cell) is functionally intermediate between working atrial/ventricular myocytes and the other (AV nodal cell) has a less negative resting membrane potential than atrial and ventricular myocytes and is a more similar to the sinoatrial nodal cells in ion channel composition. The AV nodal cells are characterized by a small or non-existent inward rectifier potassium current (IK1), low density of fast sodium current (INa) and relatively high expression of T-type calcium channels (CACNA3.1). Pacemaker channel (HCN4 and HCN2) transcripts were expressed in the AV nodal tissue but If current was not found in enzymatically isolated nodal myocytes. The electrophysiological properties of the rainbow trout nodal cells are appropriate for a slow rate of action potential conduction (small INa) and a moderate propensity for pacemaking activity (absence of IK1).
Keywords: Atrioventricular nodal cells; Electrical excitability; Fish heart; Ion channel transcripts; Ion current densities.