Lithium-metal batteries (LMBs) are promising electrochemical energy storage devices with high energy densities. However, the extreme reactivity of metallic lithium, the large volumetric change of the electrode during cycling, and the notorious dendrite formation issues lead to low cyclic stability and safety concerns, hindering the practical application of LMBs. In particular, the intrinsic tendency of uneven lithium deposition and the large internal electrode stress lead to the piecing of solid electrolyte interphases (SEIs), thereby resulting in fast decay of the anode. We develop a facile laser processing technique to fabricate laser-structured copper foils (LSCFs) that are able to regulate the lithium deposition kinetics and increase the cycle life of LMBs. By simply scribing commercial foils using a 355 nm laser, microstructural features with fish-scale patterns are obtained. The lithium deposition follows a drastically different mode on the LSCF compared with commercial planar copper foils which relieves the internal stress of lithium and prohibits the piecing of SEI. A high Coulombic efficiency of >96% of the lithium metal anode is maintained for over 100 cycles on the LSCF at a current density of 1 mA cm-2 and an areal capacity of 1 mAh cm-2 while the benchmark decayed to below 80% after 50 cycles. Full cells based on LiFePO4 cathodes display a reasonable specific capacity of 125 mAh g-1 over 300 cycles at a rate of 1 C. This work provides a fast yet effective laser-based approach to construct highly stable lithium metal anodes.
Keywords: laser processing; lithium dendrite; lithium deposition; lithium−metal batteries; solid-electrolyte interphases.