The antibacterial activity of a Cinnamomum cassia essential oil (EO) and of its main component trans-cinnamaldehyde (90% w/w) was examined against five Listeria monocytogenes strains. The minimal inhibitory concentrations (MICs) of C. cassia EO against the five L. monocytogenes strains were identical (250 µg ml-1 ), while the minimal bactericidal concentrations (MBCs) ranged between 800 and 1200 µg ml-1 . In order to study if this EO and trans-cinnamaldehyde altered the five strains at the membrane level, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured in presence of different concentrations (1/2MIC, MIC, 2MIC) of these antibacterial agents. A concentration-dependent increase of fluorescence anisotropy of DPH in their presence reflecting a rigidification of the membrane was observed for the five strains. This modification of the membrane fluidity was associated with a perturbation of the selective membrane permeability, as a perturbation of the gradient between intracellular and extracellular pH was also observed.
Keywords: Listeria monocytogenes; Cinnamomum cassia essential oil; antibacterial activity; cinnamaldehyde; foodborne pathogen; intracellular pH; membrane fluidity.
© 2021 The Society for Applied Microbiology.