Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18

Adv Mater. 2021 Mar;33(12):e2007231. doi: 10.1002/adma.202007231. Epub 2021 Feb 18.

Abstract

Obtaining a finely tuned morphology of the active layer to facilitate both charge generation and charge extraction has long been the goal in the field of organic photovoltaics (OPVs). Here, a solution to resolve the above challenge via synergistically combining the layer-by-layer (LbL) procedure and the ternary strategy is proposed and demonstrated. By adding an asymmetric electron acceptor, BTP-S2, with lower miscibility to the binary donor:acceptor host of PM6:BO-4Cl, vertical phase distribution can be formed with donor-enrichment at the anode and acceptor-enrichment at the cathode in OPV devices during the LbL processing. In contrast, LbL-type binary OPVs based on PM6:BO-4Cl still show bulk-heterojunction like morphology. The formation of the vertical phase distribution can not only reduce charge recombination but also promote charge collection, thus enhancing the photocurrent and fill factor in LbL-type ternary OPVs. Consequently, LbL-type ternary OPVs exhibit the best efficiency of 18.16% (certified: 17.8%), which is among the highest values reported to date for OPVs. The work provides a facile and effective approach for achieving high-efficiency OPVs with expected morphologies, and demonstrates the LbL-type ternary strategy as being a promising procedure in fabricating OPV devices from the present laboratory study to future industrial production.

Keywords: bulk-heterojunctions; layer-by-layer assembly; miscibility; ternary organic photovoltaics; vertical phase distributions.