Sophora alopecuroides L. is a highly medicinal plant. The aim of the current study was to determine the phytochemical screening, pharmacological potentials and application of scanning electron microscope (SEM) of S. alopecuroides (SA) seeds. To achieve this purpose, six different solvents were used to prepare SA seed extracts. Phytochemical and antioxidant activities were determined calorimetrically. To investigate the antidiabetic activity, α-amylase inhibition assay was determined. Brine shrimp assay was used to determine cytotoxicity potential. Anti-leishmanial potential was confirmed using MTT assay. Disc-diffusion method was used to detect protein kinase inhibitory, antibacterial and antifungal activities and showed significant results. SEM analysis was used as an identification tool. Considerable amount of phenolic and flavonoid contents were identified in methanol extract (SASM) (93.76 ± 2.71 GAE/mg) and (77 ± 3.60 QE/mg). Highest DPPH scavenging potential (82%) was reported for SASM. Significant total antioxidant capacity (90.60 ± 1.55 alpha amylase enzyme [AAE]/mg) and total reducing power (94.44 ± 1.38 AAE/mg) were determined for LOSM. Highest α-amylase inhibition was reported in SASM (78.20 ± 1.58%). Highest LD50 of brine shrimp was found for n-hexane extract (SASH) 13.03 μg/ml. All extracts showed strong anti-leishmanial activity except SASH. The seeds of SA were seen to be oblong to obovate, projections, wavy slightly straight, anticlinal wall was raised with apex acuminate. In conclusion, our experimental findings highly support the ethnomedicinal and biological potentials of the SA seeds. Moreover, SA seeds need to be explored for identification and isolation of bioactive compounds. In future, we recommend further in vivo toxicity assays and clinical efficacies to further evaluate its different biomedical properties.
Keywords: Sophora alopecuroides L. antimicrobial; anti-leishmanial; antioxidant; enzyme inhibition assays; scanning electron microscopy.
© 2021 Wiley Periodicals LLC.