Schizandrin B attenuates hypoxia/reoxygenation injury in H9c2 cells by activating the AMPK/Nrf2 signaling pathway

Exp Ther Med. 2021 Mar;21(3):220. doi: 10.3892/etm.2021.9651. Epub 2021 Jan 18.

Abstract

Schizandrin B exhibits prominent antioxidant and anti-inflammatory effects, and plays an important role in ameliorating myocardial ischemia/reperfusion injury. However, the underlying protective mechanisms remain to be elucidated. The aim of the present study was to explore the cardioprotective effects of schizandrin B against hypoxia/reoxygenation (H/R)-induced H9c2 cell injury, focusing on the role of the adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in this process. The results showed that schizandrin B attenuated the H/R-induced decrease in cell viability and the increase in lactate dehydrogenase release, as well as the apoptosis rate in H9c2 cells. Schizandrin B also mitigated H/R-induced oxidative stress, as illustrated by the decrease in intracellular reactive oxygen species generation, malondialdehyde content and NADPH oxidase 2 expression, and the increase in antioxidant enzyme superoxide dismutase and glutathione peroxidase activities. In addition, schizandrin B reversed the H/R-induced upregulation of pro-inflammatory cytokines [interleukin (IL)-1β (IL-1β) tumor necrosis factor-α, IL-6 and IL-8] and the downregulation of anti-inflammatory cytokines (transforming growth factor-β and IL-10) in the culture supernatant. Notably, schizandrin B increased the expression of Nrf2, NAD(P)H: Quinone oxidoreductase (NQO-1) and heme oxygenase-1 (HO-1) in H/R-treated H9c2 cells, activating the Nrf2 signaling pathway. The cardioprotection of schizandrin B against H/R injury was inhibited by Nrf2 knockdown induced byNrf-2-specific small interfering RNA (siRNA; si-Nrf2) transfection. Furthermore, schizandrin B enhanced phosphorylated (p)-AMPK expression, while AMPK knockdown induced by AMPK-specific siRNA(si-AMPK) transfection remarkably eliminated schizandrin B-induced cardioprotection and reduced Nrf2 expression in H/R-treated H9c2 cells. Taken together, these results suggested that schizandrin B exerts cardioprotection on H/R injury in H9c2 cells due to its antioxidant and anti-inflammatory activities via activation of the AMPK/Nrf2 pathway.

Keywords: adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2signaling pathway; inflammation; myocardial ischemia/reperfusion injury; oxidative stress; schizandrin B.