Matrix metalloproteinases (MMPs) play key roles in epithelial-mesenchymal transition (EMT) for the development of cancer cell invasion and metastasis. MMP-13 is an extracellular matrix (ECM)-degrading enzyme that plays crucial roles in angiogenesis, cell cycle regulation, niche maintenance, and transforming squamous epithelial cells in various tissues. CD44, a transmembrane glycoprotein expressed on esophageal tumor cells, is required for EMT induction and invasion in esophageal squamous cell carcinoma (ESCC). The transcription factor TWIST1, as EMT and stemness marker, regulates MMPs expression and is identified as the downstream target of CD44. In this study, we aimed to investigate the probable interplay between the expression of key genes contributing to ESCC development, including MMP-13, TWIST1, and CD44 with clinical features for introducing novel diagnostic and therapeutic targets in the disease. The gene expression profiling of MMP-13, TWIST1, and CD44 was performed using quantitative real-time PCR in tumor tissues from 50 ESCC patients compared to corresponding margin non-tumoral tissues. Significant overexpression of MMP-13, CD44S, CD44V3, CD44V6, and TWIST1 were observed in 74%, 36%, 44%, 44%, and 52% of ESCC tumor samples, respectively. Overexpression of MMP-13 was associated with stage of tumor progression, metastasis, and tumor location (P < 0.05). There was a significant correlation between TWIST1 overexpression and grade (P < 0.05). Furthermore, overexpression of CD44 variants was associated with stage of tumor progression, grade, tumor invasion, and location (P < 0.05). The results indicated the significant correlation between concomitant expression of MMP-13/TWIST1, TWIST1/CD44, and CD44/MMP-13 with each other in a variety of clinicopathological traits, including depth of tumor invasion, tumor location, stage of tumor, and lymph node involvement in ESCC tissue samples (P < 0.05). Collectively, our results indicate that the TWIST1-CD44-MMP-13 axis is involved in tumor aggressiveness, proposing these genes as regulators of EMT, diagnostic markers, and therapeutic targets in ESCC.
Keywords: EMT; ESCC; Invasion; Matrix metalloproteinase.