Transkingdom network analysis provides insight into host-microbiome interactions in Atlantic salmon

Comput Struct Biotechnol J. 2021 Jan 29:19:1028-1034. doi: 10.1016/j.csbj.2021.01.038. eCollection 2021.

Abstract

Background: The Atlantic salmon gut constitutes an intriguing system for studying host-microbiota interactions due to the dramatic environmental change salmon experiences during its life cycle. Yet, little is known about the role of interactions in this system and there is a general deficit in computational methods for integrative analysis of omics data from host-microbiota systems.

Methods: We developed a pipeline to integrate host RNAseq data and microbial 16S rRNA amplicon sequencing data using weighted correlation network analysis. Networks are first inferred from each dataset separately, followed by module detections and finally robust identification of interactions via comparisons of representative module profiles. Through the use of module profiles, this network-based dimensionality reduction approach provides a holistic view into the discovery of potential host-microbiota symbionts.

Results: We analyzed host gene expression from the gut epithelial tissue and microbial abundances from the salmon gut in a long-term feeding trial spanning the fresh-/salt-water transition and including two feeds resembling the fatty acid compositions available in salt- and fresh-water environments, respectively. We identified several host modules with significant correlations to both microbiota modules and variables such as feed, growth and sex. Although the strongest associations largely coincided with the fresh-/salt-water transition, there was a second layer of correlations associating smaller host modules to both variables and microbiota modules. Hence, we identify extensive reprogramming of the gut epithelial transcriptome and large scale coordinated changes in gut microbiota composition associated with water type as well as evidence of host-microbiota interactions linked to feed.

Keywords: Host-microbiome interactions; Transkingdom network analysis.