Single-mode lasing of CsPbBr3 perovskite NWs enabled by the Vernier effect

Nanoscale. 2021 Mar 4;13(8):4432-4438. doi: 10.1039/d0nr08644d.

Abstract

Inorganic lead halide perovskite (CsPbX3, X = Cl, Br, I) NWs (NWs) have been employed in lasers due to their intriguing attributes of tunable wavelength, low threshold, superior stability, and easy preparation. However, current CsPbX3 NW lasers usually work in a multi-mode modal, impeding their practical applications in optical communication due to the associated false signaling. In this work, high-performance single-mode lasing has been demonstrated by designing and fabricating coupled cavities in the high-quality single-crystal CsPbBr3 NWs via the focused ion beam (FIB) milling approach. The single-mode laser shows a threshold of 20.1 μJ cm-2 and a high quality factor of ∼2800 profiting from the Vernier effect, as demonstrated by the experiments and finite-different time-domain (FDTD) simulations. These results demonstrate the promising potentials of the CsPbX3 NW lasers in optical communication and integrated optoelectronic devices.