Annual analysis of field-evolved insecticide resistance in Bemisia tabaci across China

Pest Manag Sci. 2021 Jun;77(6):2990-3001. doi: 10.1002/ps.6338. Epub 2021 Mar 9.

Abstract

Background: Over recent decades, many efficacious insecticides have been applied for control of Bemisia tabaci, one of the most notorious insect pests worldwide. Field-evolved insecticide resistance in B. tabaci has developed globally, but remains poorly understood in China.

Results: In this study, a total of 30 field samples of the whitefly Bemisia tabaci from eight provinces of China were collected in 2015 to 2018. Twenty-four of the populations were identified as Mediterranean, 'Q' type (MED), three were Middle East-Asia Minor 1, 'B' type (MEAM1), and three were mixtures of MED/ MEAM1. After identifying whether they belong to MED or MEAM1, the selected individuals were used in bioassays assessing insecticide resistance to abamectin, thiamethoxam, spirotetramat, cyantraniliprole, and pyriproxyfen. Our results showed that all populations in the eight regions had little or no resistance to abamectin; abamectin resistance was highest in the Hunan (Changsha) and Hubei (Wuhan) regions and was lowest in the island region of Hainan (Sanya). The resistance of B. tabaci to spirotetramat, cyantraniliprole, and pyriproxyfen increased each year. The resistance to thiamethoxam remained low because of the high LC50 value for the laboratory strain.

Conclusion: These findings suggest that a rotation system using efficacious B. tabaci insecticides with differing mode of actions ought to be implemented for sustainable control to reduce the potential of resistance development. This study provides important data to support the integrated pest management and insecticide resistance management of B. tabaci in China. © 2021 Society of Chemical Industry.

Keywords: Bemisia tabaci; cyantraniliprole; insecticides; resistance; spirotetramat.

MeSH terms

  • Animals
  • Asia, Eastern
  • China
  • Hemiptera*
  • Humans
  • Insecticide Resistance
  • Insecticides* / pharmacology

Substances

  • Insecticides