Sulfur isotope variations in mantle-derived lavas provide important constraints on the evolution of planetary bodies. Here, we report the first in situ measurements of sulfur isotope ratios dissolved in primitive volcanic glasses and olivine-hosted melt inclusions recovered from the Moon by the Apollo 15 and 17 missions. The new data reveal large variations in 34S/32S ratios, which positively correlates with sulfur and titanium contents within and between the distinct compositional groups of volcanic glasses analyzed. Our results uncover several magmatic events that fractionated the primordial sulfur isotope composition of the Moon: the segregation of the lunar core and the crystallization of the lunar magma ocean, which led to the formation of the heterogeneous sources of the lunar magmatism, followed by magma degassing during generation, transport, and eruption of the lunar lavas. Whether the Earth's and Moon's interiors share a common 34S/32S ratio remains a matter of debate.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).