Purpose: Autologous chimeric antigen receptor T (CAR-T) cell therapy is an effective treatment for relapsed/refractory acute lymphoblastic leukemia (r/r ALL). However, certain characteristics of autologous CAR-T cells can delay treatment availability. Relapse caused by antigen escape after single-targeted CAR-T therapy is another issue. Therefore, we aim to develop CRISPR-edited universal off-the-shelf CD19/CD22 dual-targeted CAR-T cells as a novel therapy for r/r ALL.
Patients and methods: In this open-label dose-escalation phase I study, universal CD19/CD22-targeting CAR-T cells (CTA101) with a CRISPR/Cas9-disrupted TRAC region and CD52 gene to avoid host immune-mediated rejection were infused in patients with r/r ALL. Safety, efficacy, and CTA101 cellular kinetics were evaluated.
Results: CRISPR/Cas9 technology mediated highly efficient, high-fidelity gene editing and production of universal CAR-T cells. No gene editing-associated genotoxicity or chromosomal translocation was observed. Six patients received CTA101 infusions at doses of 1 (3 patients) and 3 (3 patients) × 106 CAR+ T cells/kg body weight. Cytokine release syndrome occurred in all patients. No dose-limiting toxicity, GvHD, neurotoxicity, or genome editing-associated adverse events have occurred to date. The complete remission (CR) rate was 83.3% on day 28 after CTA101 infusion. With a median follow-up of 4.3 months, 3 of the 5 patients who achieved CR or CR with incomplete hematologic recovery (CR/CRi) remained minimal residual disease (MRD) negative.
Conclusions: CRISPR/Cas9-engineered universal CD19/CD22 CAR-T cells exhibited a manageable safety profile and prominent antileukemia activity. Universal dual-targeted CAR-T cell therapy may offer an alternative therapy for patients with r/r ALL.
©2021 American Association for Cancer Research.