Massively parallel ultrafast random bit generation with a chip-scale laser

Science. 2021 Feb 26;371(6532):948-952. doi: 10.1126/science.abc2666.

Abstract

Random numbers are widely used for information security, cryptography, stochastic modeling, and quantum simulations. Key technical challenges for physical random number generation are speed and scalability. We demonstrate a method for ultrafast generation of hundreds of random bit streams in parallel with a single laser diode. Spatiotemporal interference of many lasing modes in a specially designed cavity is introduced as a scheme for greatly accelerated random bit generation. Spontaneous emission, caused by quantum fluctuations, produces stochastic noise that makes the bit streams unpredictable. We achieve a total bit rate of 250 terabits per second with off-line postprocessing, which is more than two orders of magnitude higher than the current postprocessing record. Our approach is robust, compact, and energy-efficient, with potential applications in secure communication and high-performance computation.

Publication types

  • Research Support, Non-U.S. Gov't