Objectives: To differentiate squamous cell hyperplasia (SCH) (benign) from squamous cell carcinoma (SCC) malignant) using textural features extracted from CT images and thereby, facilitate the preoperative medical diagnosis and treatment of throat cancers without the need for sample biopsies.
Methods: In total, 100 throat cancer patients were selected for this retrospective study. The cases were collected from the Second Hospital of Jilin University, Changchun, China, from June 2017 to January 2019. The patients were separated into a training and validation cohort consisting of 70 and 30 cases, respectively. The Artificial Intelligence Kit software (A.K. software) was used to extract the radiomics features from the CT images. These features were further processed using the minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) methods to obtain a subset of optimal features. The radiomics model was validated based on area-under-the-curve (AUC) values, accuracy, specificity, and sensitivity using the R-studio software.
Results: The diagnostic accuracy, specificity, PPV, NPV, and AUC values obtained for the training cohort was 0.91, 0.9, 0.93, 0.9, and 0.96 CT angiography (CTA), 0.93, 0.93, 0.95, 0.90, and 0.96 computed tomography normal (CTN), and 0.92, 0.87, 0.91, 0.96, and 0.96 CT venogram (CTV). These values were subsequently confirmed in the validation cohort.
Conclusion: The radiomics-based prediction model proposed in this study successfully differentiated between SCH and SCC throat cancers using CT imaging, thereby facilitating the development of accurate preoperative diagnosis based on specific biomarkers and cancer phenotypes.
Keywords: machine learning; neck; nomograms; radiomics; tomography x-ray computed.
Copyright: © Saudi Medical Journal.